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Nov.1917.  Einstein’s Theory of Gravitation..

- On Einstein’s Theory of Gravitation, and its Astronomical Con-
sequences. Third Paper.* By W. de Sitter, Assoc. R.A.S.

Contents of Third Paper.

1. On the relativity of inertia. New form of the field-equations. Two
solutions A and B of these equations,

2. On space with constant positive curvature. Comparison of the two
systems A and B. ' .

3. Rays of light and parallax in the two systems. Hyperbolical space.

4. Motion of a material particle in the inertial field of the two systems.
Further comparison of the two systems.

5. Differential equations for the gravitational field of the sun. Approxi-
mate integration of these equations,

6. Estimates of R in the system A,

7. Estimates of R in the system B.

I. In Einstein’s theory of general relativity there is no
essential difference between gravitation and inertia. The combined
effect of the two is described by the fundamental tensor g,,, and
how much of it is to be called inertia and how much gravitation
is entirely arbitrary. We might abolish one of the two words, and
call the whole by one name only. Nevertheless it is convenient
to continue to make a difference. Part of the g,, can be directly
traced to the effect of known material bodies, and the common
usage is to call this part ‘“gravitation,” and the rest “inertia.”
Then, if we take as a system of reference three rectangular cartesian
space co-ordinates and the time multiplied by ¢ (the velocity of
light én vacuo), we know that, in that portion of the four-dimensional
time-space which is accessible to our observations, the g,, of pure
inertia are, within certain limits of uncertainty,

’
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In our immediate neighbourhood, within the solar system, the
limits of uncertainty are very narrow: say the eighth decimal

* See first paper, M. V., vol. Ixxvi. p. 699 ; second paper, M. N., vol. Ixxvii.
p- 155. The present paper gives an account of the questions treated in the
following communications:—
A. Eingtein, ‘‘Kosmologische Betrachtungen zur allgemeinen Relativi-
titstheorie,” Sitzungsber. Berlin, 1917 Feb. 8, p. 142.
W. de Sitter, ‘‘ On the Relativity of Inertia, remarks concerning Einstein’s
. latest Hypothesis,” Proc. Akad. Amsterdam, 1917 March 31, vol. xix.
p. 1217.
W. de Sitter, ‘“On the Curvature of Space,” Proc. Akad. Amsterdam,
1917 June 30, vol. xx. (not yet published in English).
The notations used are the same as in the first. and second papers. We
may recall that duu=1, 5ur=0 for u#v, and that 2 is a sum from 1 to 4, and
2’ from 1 to 3.
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4 Prof. W. de Sutter, On Einstein’s Theory of LXXVIIL 1,

place. As we get further away in space, or in time, or in both,
the limits become wider: at a distance of a million light-years we
can perhaps only guarantee the second decimal place.* How the
Juw are in those portions of space and time to which our observa-
tions have not yet penetrated, we do not know, and how they are
at infinity (of space or of time) we shall never know. All assump-
tions regarding the values of the g, at infinity are therefore
extrapolations, which we are free to choose in accordance with
theoretical or philosophical requirements.

The extrapolation which most naturally offers itself, and which
is also tacitly made in Newton’s theory of inertia, is that the g,,
retain the values (1) for all distances and times up to infinity. It
has been pointed out in the second paper ¥ that in this theory
inertia is not relative. The values (1) are not invariant: the
boundary-values of the g,, at infinity are different in different
systems of co-ordinates. IKinstein and others have therefore tried
to find another extrapolation, by which the g,,, while in our
neighbourhood retaining the values (1) with’' the approximation
demanded by the observations, would at infinity degenerate to a
set of values which would be the same for all systems of reference.

The g,., are determined by the field-equations, which in Einstein’s
theory of 1915 are :

(2) G,uv = - KT/.LV + %Kg,u.vT,
or

(2) G ~ 39G = —«Ty,,
and

: G =«T.

Once the system of reference of space- and time-variables has been
chosen, these equations determine the g,, apart from constants of
integration, or boundary-conditions at infinity. Only the deviations
of the actual g,, from these values at infinity are thus due to the
effect of matter, through the mechanism of the equations (2) or (2').
If at infinity all g,, were zero, then we could truly say that the
whole of inertia, as well as gravitation, is thus produced. This is

* There are two criteria by which we can judge the value of the funda-
mental tensor at great distances from us. The frequency of light-vibrations
is proportional to A/gy. Consequently, objects in whose spectra we are able
to identify definite spectral lines must be situated in & portion of space where
944 18 still of the order of unity. The motion of material ‘particles, on the
other hand, depends on all guy. We know that the relative velocities of the
fixed stars are small, From this we conclude that also the accelerations are
small. Let the velocities be of the order a, and let g4 be of the order v, and
gij+ 8y of the order g(¢, j=1, 2, 3). Then the accelerations contain terms
of the order v, ¥2, B. v, a®. v, a*. B, etc., but none of the order 8. Thus here
also we can only be sure of the smallness of +, and not of 8. Within the
solar system the case is different, for there we have not only a statistical know-
ledge of the velocities, but we know the accelerations themselves ; and our
observations are so exact as to carry us to quantities of the second order.
Consequently, we can be sure of gy to the first order, and of g, to the second,
the first ovder corresponding to about 10-8,

+ M.N., vol. Ixxvii. pp. 181-183.
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the reasoning which has led to the postulate that at infinity all
Juv shall be zero. I have called this the mathematical postulate of
relativity of inertia. ,

If all matter were destroyed, with the exception of one material
particle, then would this particle have inertia or not? The school
of Mach requires the answer No. If, however, by “all matter”
is meant all matter known to us, stars, nebule, clusters, etc., then
the observations very decidedly give the answer Yes. The followers
of Mach * are therefore compelled to assume the existence of still
more matter, This matter, however, fulfils no other purpose than
to enable us to suppose it not to exist, and to assert that in that
case there would be no inertia. This point of view, which denies
the logical possibility of the existence of a world without matter,
I call the material postulate of wrelativity of wnertia. The
hypothetical matter introdueed in accordance with it I call world-
matter. Einstein originally supposed that the desired effect could
be brought about by very large masses at very large distances. He
has, however, now convinced himself that this is not possible.
In the solution which he now proposes, the world-matter is not
accumulated at the boundary of the universe, but distributed over
the whole world, which is finite, though unlimited. Its density
(in natural measure) is constant, when sufficiently large units of
space are used to measure it. Locally its distribution may be very
unhomogeneous. In fact, there is no essential difference between
the nature of ordinary gravitating matter and the world-matter.
Ordinary matter, the sun, stars, etc., are only condensed world-
matter, and it is possible, though not necessary, to assume all
world-matter to be so condensed. In this theory ‘inertia” is
produced by the whole of the world-matter, and ““gravitation ” by
its local deviations from homogeneity. ' ‘

In Einstein’s new solution the three-dimensional world is not
infinite, but spberical.7 Thus no boundary conditions at infinity
are required. From the point of view of the theory of relativity
it seems at first sight to be incorrect to say: the world ¢s finite, "
since by a transformation of co-ordinates it can be made infinite,.
euclidean, or hyperbolical. Such transformations, however, leave
the invariant G unaltered, and consequently also after the intro-
~duction of euclidean or hyperbolical co-ordinates the world remains
finite and spherical in natural measure. The length of the semi-
axis of 2, in natural measure is

L =j; A 91,1‘1”1-

If this is to be finite, it is necessary that g,, shall become zero
for #, = oo ; and inversely, if g;; becomes zero of a sufficiently high
order for #; = oo, then L, is finite. It is thus evident that the

* Mach himself still thought that the fixed stars would be sufficient.
This, however, is not so.
+ Or elliptical, see below, art. 2.
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6 Prof. W. de Sitter, On Einstein’s Theory of LXXVIIL I,

condition that the g,, shall be zero at infinity is equivalent to the
finiteness of the world in natural measure.

It is found, however, that the g,, of this finite world do not
satisfy the equations (2). _ Einstein is thus compelled to add a new
term to these equations, which then become

(3) Gy = Aguy = — &Ly + 39 T,
or
(3) Gy — 39u(G — 20) = — kT, ;
from which we find easily
(4) G — 4A=«T.

If we put

- G,UJI’ = G;w - /\gy.w
we have
G =G - 4A

Therefore the equations (3) and (3') are found if in (2) or (2')
we replace G, and G by G,," and G'. Consequently the equations
(3) can be derived from the generalised principle of Hamilton,* if

we now take L
Hy = [/ = g(G— 4\)dr.

All the conservative properties which follow from the principle
of Hamilton thus remain true after the introduction of A.

The curvature of the four-dimensional time-space is proportional
to G. In the new theory we have G =«T + 4\ : thus if there were
no matter (T = o), this curvature would not be zero.

Einstein’s solution of the equations (3) implies the existence
of a “world-matter” which fills the whole universe, as has already
been mentioned. It is, however, also possible to satisfy the
equations without this hypothetical world-matter. Then, of
course, the ‘“material postulate of relativity of inertia” is not
satisfied, but the ‘‘“mathematical postulate,” which makes no
mention of matter, but only requires the ¢, to be zero at infinity,
is satisfied. This is brought about by the introduction of the term
with A, and not by the world-matter, which, from this point of view,
is-not essenlial. . '

If we neglect all pressures and other internal forces, and if we
suppose all matter to be at rest, then the tensor T,, becomes

(5) T, ,=g,p,  all other T. =0,
p being the density in natural measure. We can put
(6) P =.P0 + Py

where p, is the average density of the world-matter. If p, is
positive, then p, may be positive or negative ; but in the latter case
the numerical value must not exceed p,.

* See first paper, 4. N., Ixxvi. p. 707.
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If we wish to neglect gravitation, we must neglect p;, and
take p, constant. The equations (3) then become *

) ( Gij — (A +Fxpg)gij = o-
1 Giyg = (M +3Kpg)g4s= — kP aa-
These can be satisfied by the g,, implied by the line-element

(84) ds?= — dr® - R?sin? %[dw + sin? yd 2] + c%dt?,
it

I -
{94) KPo = 2, A= iR

This is Einstein’s new solution.
The equations are also satisfied by

(88)  ds?= —dr? — R?sin?.L [dy? + sin? yd6?] + cos? . c2di?,
R 4 4 R

©ooaf

(o e A=

and, of course, also by

(8¢c) ds? = — dr? — r{dy? + sin? yd6?] + c2di,
with

{90) Po =0, A=o0.

This last solution (c) gives the g,, of the old theory of relativity,
or of Newton’s theory of inertia. In it three-dimensional space
is euclidean, in (A) and (B) it has a constant positive curvature.
In (a) there is a world-matter; in (8) and (c) we have py=o0: the
hypothetical world-matter does not exist.

2. 1f in (84) and (88B) we put

(1 0) r =Ry,
the three-dimensional line-element becomes
(11) do? =R2{dy? + sin? x[dy? + sin? yd6?]}.

This is the line-element of a three-dimensional space with a
constant positive curvature, which is

1
£=§2.

There are two possible forms of space with constant positive
curvature, viz. the spherical space, or space of Riemann,t and the

elliptical space, which has been investigated by Newcomb.f In
the spherical space all straight lines starting from a point intersect

€

* The equations will be further developed in art. 5, below.

t ¢“Ueber die Hypothesen, welche der Geometrie zu Grunde liegen,” Werke,
p. 272.

1 ‘“Elementary theorems relating to the geometry of a space of three
dimensions and of uniform positive curvature in the fourth dimension,” Crelles
Jowrnal, vol. 1xxxiii. p. 293.
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again in the “antipodal” point, whose distance from the first point
measured along any of these lines is w#R. In the elliptical space
any two straight lines cannot have more than one point in common.
In both forms of space the straight line is closed : its total length
is 2wR in the spherical space, and #R in the elliptical space.
In the spherical space the largest possible distance between two
points is 7R, and there is only one point, the “antipodal point,” at
that distance from a given point. In the elliptical space the
largest possible distance is 4w R, and all points at that distance
from a given point lie on a straight line—the ¢ polar line” of the
point. Both spaces are finite. The total volume of the spherical
space is 272R3, and of the elliptical #?R3.

Einstein only mentions the spherical space, which by the two-
dimensional analogy of the sphere is easier to represent to our
imagination. The elliptical space is, however, really the simpler
case, and it is preferable to adopt this for the physical world.*
Also the spherical space would give rise to difficulties, which will
be pointed out below,

We can, instead of the co-ordinates », ¢, 6, introduce other
co-ordinates by which the elliptical, or spherical, space is projected
on an euclidean or on a hyperbolical space. By the transformation

(12) r=Rtany

the whole of the elliptical space is projected on the whole of the
euclidean space.f The projection of the spherical space fills the

* This is also the opinion of Einstein (communicated to the writer by
letter). .
1 By the transformation .
1 r;=Rsinx
the elliptical space is made to correspond with the inside of the sphere m <R
in the euclidean space. The representation of the spherical space fills this
sphere twice. If we put
x;=r,sinysin 4,
Yy, =ry8inycos g,
2 =7ico8y,
the co-ordinates a, ¥, % are those used by Einstein in his paper of 1917 Feb.
In these co-ordinates the three-dimensional line-element is
; ’ ' TiXjOAL X
, do*= dwp+ 33 Sl
kg 1 J 1
If we add
u; =R cos x, '
then x;, ¥;, 2y, %, are the co-ordinates used by Weierstrasz.
Riemann used the co-ordinates found by the transformation

r,=2R tan }x.
The line-element then becomes
do?= dry? + 1o dy? + sin? ¢ d62] .
(T + 774 B
" By this transformation (which was also used in the paper by the writer of
1917 March) the whole of the spherical space corresponds to the whole of the
euclidean space. The elliptical space corresponds to the inside of the sphere

r,<2R.
2_’l‘he transformation used in the text leads to the co-ordinates of Beltrami,
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euclidean space twice, the projections of antipodal points being
the same.

The four-dimensional line-element in these co-ordinates is, for
the two systems,

dr? r2[dy? + sin? Yd6?]

I3A A= - ——— 2442
(134) - (1'+ er?)? I+ er? o
dr? r?[dy? + sin? ydf?] = c2de?
I3B ds? = — - .
(139) (14 er?)? I + er? U oI er?

If now we put
X, =rsinysin
X, =T sin y cos ¢
Xg =T COS |
X, =ct

then the g,, for these co-ordinates are

Bij EX,X] {A 944= t

Ti= = e (1+er?)?’

The g,, for r=o0 have the values (1) in both systems A and B.
For r=c0 they degenerate to

-,

(12 !

O O O o
O O O O
©O O 0O ©

O O O

(1B)

o O O O
0O O O O

O O O
o 0o o ©O

\ (o]

The set ( A) is invariant for all transformations for which
(at infinity) ¢’ =1; the set (1B) is invariant for a/l transformations.*
It thus appears ‘that the system A only satisfies the mathematical
postulate of relativity if the latter is apphed to three-dimensional
space only. In other words, if we conceive the three-dimensional
space (X;, X, X5) With its world-matter as movable in an absolute
space, its movements can never be detected by observations: all
motions of material bodies are relative to the space (x;, x,, Xg)
with the world-matter, not to the absolute space. The world-
matter thus takes the place of the absolute space in Newton’s
theory, or of the “inertial system.” It is nothing else but this
inertial system materialised. It should be pointed out that this

at infinity.
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relativity of inertia is in the system A only realised by making
the time practically absolute. It is true that the fundamental
equations of the theory, the field-equations (3) and the equations
of motion, 7.e. the differential equations of the geodetic line,
remain invariant for all transformations. But only such trans-
formations for which at infinity ¢ =¢ can be carried out without
altering the values (1a). In the system B, on the other hand,
there is complete invariance for all transformations involving the

four variables.
The system B is the four-dimensional analogy of-the three-
dimensional space of the system A, If we put

(14) ds?= —R¥dw?+sin?w/d?+sin? {[dy? + sin? Yyd6?])},
the g,, implied by this line-element satisfy the equations (3), with
the conditions (9B). In order to avoid imaginary angles, we

can put
=10, ¢=1L.

Then the line-element hecomes *
(15) ds?= 32{ dw'? — sinh? '(d{? + sinh? ¢’ [d¢2 + sin? yd6?]) }.
If now we put
p=Rtanh o’ sinh ¢,

7= R tanh ' cosh é’,
then we have

— (1 — er?)dp® - 2ep7dpd-r + (1 + epg)d'r2 _ p*[dy? + sin?ydr?]

16) ds?=
| (6 [r+ep?=m)F 1+e(p? = 77)
* If we take )

r=Rsinh o’ sinh {’, t=R sinh o’ cosh ¢/,
X=rsin ¢ sin 6, ‘
y=rvsin § cos 8, u=R cosh w’,
Z=TCcosy, ‘

we have v

dst= — dx? —dy? —dz®+ dt? — du?,
and - i
() R2-x2—y2-z24+t2—u®=o0.

The latter equation represents an hyperboloid (one-bladed) in the five-
dimensional space (x, y, z, t, u). The projection of a point %, y, z, t, u of
this hyperboloid from the pomt X=y=z=t=u=o0 on the four-dimensional
space u=R has the co-ordinates (€, », {, ), where

E=psinysin 6,
n=psin { cos 0,
* (=pcosy.

This projection is limited by the ‘‘ hyperbola”

() R:+ g2+ 9%+ (2 —12=0, or .I+e(p?—1%)=0,

which is the projection of the points at infinity on the hyperboloid (¢). The
part of u=R which is outside the hyperbola (b) is the projection of the (two-
bladed) hyperboloid which is conJugated to (a). It will be seen from (16)
that on the limiting ‘¢ hyperbola” (b) all gy become infinite. - ‘
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Finally, by the transformation

.7 P ., Ct T
R ~/1+e(p2—72), R \/I—e'rz’

we find the formula (8B).

In the three-dimensional space, whose line-element is (11), we
can transfer the origin to a point (x;, ¥, 6,), and the line-element
expressed in co-ordinates referred to this new origin will again
have the same form (ri1). Exactly in the same way we can in
(14) transfer the origin to a point (wy, ¢, ¥, 6,), corresponding to
{xp Y 6y cty) in (8B). The line-element in the co-ordinates
referred to this new origin will again have the same form (14),
and this can again be transformed to new variables x," ¥/, ¢, ct/,
and will then again have the form (88B). Of course ct' will
generally be different from ct.

In both systems A and B it is always possible, at every point
of the four-dimensional time-space, to find systems of reference in
which the g,, depend only on one space-variable (the *radius-
vector”), and not on the “time.” In the system A the ‘“time”
of these systems of reference is the same always and everywhere,
in B it is not. In B there is no universal time; there is no
essential difference between the ‘time’” and the other three
co-ordinates. None of them has any real physical meaning. In
A, on the other hand, the time is essentially different from the
space-variables.

3. In order further to compare the two systems, we will
consider the course of rays of light. In A, if we use the co-
ordinates 7, ¥, 0, ct, the velocity of light is constant, and the rays
of light, which are geodetic lines in the four-dimnensional time-
space, are also geodetic in the three-dimensional space 7, y, 6. On
triangles formed by such lines the ordinary formule of spherical
trigonometry are applicable. Thus, if we suppose the sun to be at
rest in the origin of co-ordinates, and if the distance sun-earth be
called a, then the parallax* p of a star whose distance from the
sun is 7, is given by

tan p = sin i 001;_7' :
.p R R J

or, since the square of @/R can be neglected,

a_ . r
=_cot .

(17) p=peoty
The same result is found in the reference system r, iy, 6, ct.
By the transformation (12) all straight lines remain straight in
the projection. We can, moreover, easily verify that the rays of

* The parallax is go° — A, if A is the angle at the earth, the angle at the
sun being 9o°. In spherical geometry, of course, go° — A is not equal to the
angle at the star, as it is in euclidean geometry.
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light must be straight lines in the system r, ¢, 6, c£. The velocity
of light in this system is

. c(l + er2)
J(1 +er?sin2 V)’
where V is the angle between the radius-vector and the tangent

to the ray of light. The equation of the ray of light then
becomes *

sinv=F
r
% being a constant. This is the equation of a straight line. The
parallax is thus determined by the ordinary formulas of euclidean
geometry, and we have

r
cot B

= ol Y

p_a
T

which is the same as (17).

The parallax vanishes for »=4xR, d.e. for the largest distance
which can occur in elliptical space. If we adopted the spherical
space, so that still larger distances could occur, p would become
negative, and for r= xR we would have p= —go°.

In the system B the rays of light are nof geodetic lines in the
three-dimensional space (7, ¢, ), nor in (1, ¥, 6). In (7, y, 6) the
velocity of light is v=c cos x. If now we introduce a new variable
-h by the cendition

I _ cos
dn= %
of which the integral is
3 . e T
(18) . smh R =tan = = R ;

then the velocity of light in the radial d1rectlon will be constant.
The line-element becomes T

— dh? - R?sinh? Zlg[dlﬁf* +sin® yd6?] + c*de?

h
R

(19B) ds?=

cosh?

* See first paper, M. N., Ixxvi. p. 717.
1 The transformation (18) can, of course, also be applied in the system A,
Then the line-element becomes

‘ _ dh? - R?sinh? %[dqﬁ +sin? 4«192]
(194) ds?= ; +c2de2.
cosh? %

In (194) all g% become zero for A=10, but g, remains 1 ; in (19B) gy also
becomes zero.
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The three-dimensional space of this system of reference is the
space with constant nmegative curvature, or hyperbolical space, or
space of Lobatschewski. It is evident from (18) that the whole of
elliptical space corresponds to the whole of the hyperbolical space ;
the representation of the spherical space would fill the hyperbolical
space twice. '

In the system of reference A, ¢, 6, ct the velocity of light is
constant [in all directions, though the transformation (18) was
found from the condition that it should be constant in the radial
direction], and the rays of light are straight (i.e. geodetic) lines in
the three-dimensional hyperbolical space (h, y, ). This hyper-
bolical space thus in the 'system B plays the same part as the
elliptical space in the system A (and the euclidean space in the
system C), so far as the propagation of light is concerned. If
the motion of material particles (mechanics) also is considered,
then the analogy breaks down, owing to the numerator cosh? &/R.

The light-rays being straight lines, we can for the derivation of
the parallax use the formulas of trigonometry in hyperbolical
geometry, We thus find

tan p =sinh % coth R}E ,
or

' a h
(20) p=—RcothR--

It follows that in the system B the parallax of a star can

never be zero. For h=w we have p= % . By the transformation

(18) we have

(20") p= @ ¢ /1+r—2.
Rsiny V' Re

Thus p reaches its minimum valuel% for x=4=. For larger

L J

values of x, which can only occur in the spherical space, p would
increase again, and for r=7R we would have p=90°. In fact, if
the spherical space is projected by (18) on the hyperbolical space,
the projections of antipodal points coincide : a star at the antipodal
point of the sun would be projected in the sun. )
It may be interesting to derive the formula (20') from the
course of rays of light in the system (r, ¢, ). In this system the

velocity of light is
v= c\/ L+
I+e?sin? V'

The equation of the ray of light becomes

a

sinV=——"__
r(1 4 er?)
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The parallax is determined by the equation ¥

dp _ _tanV
dr r

from which, if we neglect a?/r% we find

a T .9
29=;~/1 + er?,

which is the same as (20').
4. The equations of motion of a material particle in the field
of pure inertia are the differential equations of the geodetic

line, viz,
c2dt2 - Z Z[{pq} {M] ]

(21)
or, if we restrict ourselves to such systems of reference in which
the g, do not depend on z, = ¢f,

(21') 2dtz {44\ fopq} )%H‘Z {14\

In the system C, which represents Newton’s theory of inertia,
if we take rectangular cartesian space-co-ordinates, the g;; are given
by (1), and all the brackets are zero. Consequently

dx;
e2de

The orbit of a particle under the influence of inertia without
gravitation is thus a straight line in euclidean space, and the
velocity is constant.

In the system A we have for the co-ordinates 7, y, 6, ct,

{212}=——Rsinxcosx, {313}=—Rsinxcosxsin2¢,

I i

* Strictly speaking, r heré is the distance from the star to the earth,
instead of to the sun. The square of a?/r? being neglected, these two distances
may be interchanged. We thus have, in the notation of the first paper,

p=VY -z
Now we have (see first paper, p. 718)
de __  tanV dr

d_V—I+ r dv’
or

de _dV tanV

dr — dr T

from which the equation for p follows immediately.

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1917MNRAS..78....3D

FIO17ONRAS.”.778- =~ 3D!

Nov. 1917. Gravitation, and its Astronomical Consequences. 15
The other brackets are zero. We find:.

a2y . dl,zr)z . (d&)? .
~~ _-R “¥Y 2 wv
28 sin x cos X[(c o + sin“ e R

& dr 9 00 8
e Xedt® cdi cdt " edt’

2

R

a2y 2 dr dy . (d6>2
= —=cob y— . =L — ).
2ae= "R e o IV OV
We can take y=q0°, %:o. Then we find the integrals of

areas and of living force :

. o [df
2 2 —
R Sl'n X<——dt> =0C

; Jd6\2 <d7~>2
2 2 - - —
R2?sin X<dt> + 7 k.

Eliminating d¢, we find the differential equation of the orbit

(22)

A\ 2
(23) <Z—?6> +R?sin? x = gR‘* sint x.
The integral is
- c
(24) tan x cos (0_00)—_—1(—1?{7:_0'

This is the equation of a straight (¢.e. geodetic) line in the
spherical or elliptical space. By the second of (22) the velocity
is constant. Thus in the system A a material particle under the
action of inertia alone describes a straight line in elliptical space
with a constant velocity.

In the case of the system B we will use the co-ordinates
r, ¥, 6, ct. Then we have:

o I} _ 2 f22] 33 _ a2y 441 _
U=mim U= (3= () --a

R e S

The others are zero. We find now:

o d¢>2 L, <d9>2]
c_—2dt2=€r+r[<c—dz + s1n Y c-dZ ,
a0 2 dr db dyr db
- e ty—r 22
c2dt? T cdt edt 200 ¢cdt cdt’

@y zodr dy <d0>2
PR "1 et eqr TERY SV 7 ) -
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We can again take y=go°’, Z—l‘: =0. The integrals of areas

and living force are

240 _
(23) [ “”
2 .
dr\? 2<d6>2 o
‘l (a‘i +r (—i? = €r“+ k.
) The differential equation of the orbit is
r\2 e?+k

The integration is easily effected by putting Y= ~I_2 . We find
2r

(27) {1 +ecos 2(9 6,)] =
where
_ WJ(4ec? + k%)
=t

This becomes a straight line in elliptical space * only if e=1

or ¢c=o, t.e. %:o. The orbit is thus only straight if it passes

through the origin.
‘We can complete the integration by introducing an auxiliary
angle . We find the formulas

[ r?=1R%k(ecosh 2u - 1),
1% ¢os 2(0 — 6,) = $R?k(e — cosh zu),
r2sin 2(0 — 6,) = $R2%k+V/e? - 1 sinh 24,

28 <
(28) tan (6 — 6,) = \/?——tl tanh u,
N R
We have
D _ ot &
at o Xar

* In the co-ordinates?, ¥, 8 (hyperbolical space) the equation (27) becomes
R? tanh? %[k +2¢c2 + ke cos 2(0 — 8,)]=2¢?,

which is a straight line when

2ec?
e=1 +’E*-
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Consequently, the integrals (25) expressed in the co-ordinates
7, , 6 of elliptical space become *

d9
2 2, " _
R2 tan th =C.

(25) A2 2
<%> + R? sin? X<%§> =sin? y cos? y + (k + ec?) cost y.
24

In the system B, therefore, a material particle under the
influence of inertia alone does nof describe a straight line with
constant velocity. The orbit can only be straight if it passes
through the origin, but even then the velocity is not constant.
For small values of x the equations (25') do, however, not differ
from (22). Those parts of the orbit which come within the reach
of our observations therefore are sensibly straight, if we adopt a
sufficiently large value of R.

The velocity becomes zero for » =4xR. Thus a material particle
which is on the polar line of the origin can have no velocity. It
also has no energy, for the energy of a material particle is

m Z g d"""p
Ipd 7. 0
> ds

which also vanishes for »=4xR. Also the velocity of light is zero
on the polar line.

All these results sound very strange and paradoxical. They
are, of course, all due to the fact that g,, becomes zero for r=47R.
We can say that on the polar line the four-dimensional time-space
is reduced to the three-dimensional space: there is no ¢ime, and
consequently no motion,

It may be pointed out that the time taken by light to reach
the distance 3w R from the origin (or from any other point) is

i
T=§/ sec xdy =00,
cJo

A fortiori the time needed by a material particle for the same
Jjourney is also infinite. This also follows from the equations (28),
~ for the distance 7= §wR corresponds to r= 0, and consequently
to w= to0,0r¢{= t+ oo, A particle which has not always been on
the polar line can therefore only reach it after an infinite time,
v.e. it can never reach it at all. We can thus say that all the
paradoxical phenomena (or rather negations of phenomena) which

* In the co-ordinates)of hyperbolical space we have

h dé
2 Q1 2 =
R2sinh R
<62}:>2 + R2 Sinhz %(Z?>2:tanh2 I_::-l-(k + 602) SGChZ%'

The law of areas is therefore true in hyperbolical space in the system B, as
it is in elliptical space in the system A, and in euclidean spacein C.

2
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have been enumerated above can only happen after the end or
before the beginning of eternity.*

Of course such things as “ velocity ” and ¢ energy ” are relative
to the system of co-ordinates. They are not tensors, and conse-
quently different in different systems of reference. It may well
be that the system #, ¢, 6, ct is not the most simple or the
most convenient to describe the phenomena. When described
in other co-ordinates the same results may present themselves in
a different form. But the fact remains that the extrapolation
according to the hypothesis B is more different from what we are
used to in our neighbourhood than that according to the hypotheses
A or C.

The system A satisfies the ‘“material postulate of relativity of
inertia,” but it restricts the admissible transformations to those for
which at infinity ¢ =%, and thus introduces a quasi-absolute time,
as has been explained in art. 2. In B and C the time is entirely
relative, and completely equivalent to the other three co-ordinates.
" In A there is a world-matter, with which the whole world is filled,
and this can be in a state of equilibrium without any internal
stresses or pressures, if it is entirely homogeneous and at rest. In
B there may, or may not, be matter, but if there is more than one
material particle these cannot be at rest, and if the whole world
were filled homogeneously with matter this could not be at rest
without internal pressure or stress; for if it were, we would have
the system A, with g,,=1 for all values of the four co-ordinates.
The system B satisfies the ‘‘mathematical postulate” of relativity
of inertia, which does not appear to admit of a simple physical
interpretation.

In the system C we have no relativity of inertia at all. It
cannot be denied that the introduction of the constant A, which
distinguishes the systems A and B from C, is somewhat artificial,
and detracts from the simplicity and elegance of the original theory
of 1915, one of whose great charms was that it embraced so much
without introducing any new empirical constant.

Postseriptum to Art. 4 (added 1917 October). '

[The orbit of a material particle in the system B under the
influence of inertia alone is given by the equation (z7). This
equation represents a hyperbola. 1f by ry we denote the minimum
value of r, and by v, the velocity (dr/cd?) at this point, then we have

—_ = 2
e= c=ryv,, k=vy?-er’

VO2 - eI‘02 ’
Further, if we put
x=rcos(0—-6,), y=rsin(0-46,),

# In the systems of reference in which the radius-vectorris measured by
r (projection on euclidean space) and % (projection on hyperbolical space)
they are also relegated to infinity of space.
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then the equation (27) reduces to

2 9
(1) L
r,22 Riv,?

which represents a hyperbola of which the real axis is r, and the
imaginary axis Rv,. For a velocity of half a mile per day this
latter axis still exceeds the distance of Neptune from the sun
(assuming R = 10!%), and consequently for all observable phenomena
the hyperbola can be treated as a straight line,

The equations (28) may be similarly transformed to

(28) x=rycoshu, .y=Rv,sinhu, u :I_t{ + .

For vy=1 the velocity is equal to the velocity of light, and
the orbit becomes a ray of light. The rays of light are therefore
(in the system of reference r, i, 6, ¢f) hyperbolas whose imaginary
axis is R. It is easily verified that this is in accordance with the
result found in art. 3.]

5. We will now further develop the field-equations
(3) G/u.v - )\guv = - KTuv + %Kgpva-

We will consider no other source of gravitation than a material
sphere at the origin of co-ordinates, which we will call the sun.
In the systems B and C there is then no other matter than this:
inside the sun we have p=p;, and outside p=o0. In the system A
the average density of the world-matter must remain constant. If
part of it is condensed to form the sun, then the density in the
neighbourhood of the sun is decreased, so that the total mass in a
sufficiently large volume surrounding the sun is not affected. The
mass of the sun is, however, extremely small compared with the
total mass within one unit of volume of such size as must be used
to measure the average density, and we can hardly postulate the
total mass within each unit of volume to be exactly the same. We
will therefore neglect the compensation, and take

within the sun: p=p, + py,
outside the sun: p =p,.

Although this is not strictly in accordance with Einstein’s
hypothesis of constant average density, it is at all events a
legitimate problem to investigate the field of gravitation and
inertia for this distribution of matter.

We can take

ds®= — ady> — b[dy? + sin? Yd6?] + fc2dt?,

where y represents any of the variables r, k, 1, etc., which may be
used to measure the radius-vector. The equations become some-
what simpler if we introduce

l=lga, m = [gb, n=1qf.
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We can suppose a, b, f to be functions of y and ct only. We

indicate differential quotients with respect to y by accents, and
with respect to ¢t by dots. Then we find

G=m"+4§n" +3m'(m =)+ }n'(w - ')
- 2{y+ (1 + 2 —1)),

7 Gy = ~-+§m +gm/(n + 2m ~ 1)
(20) At ol 2= ),
_ %GM =in" + 300 + 2m 1)
_']_‘f{m+y+§m(m—ﬁ)+y(l -7y},
Gigg = sin? y . Gy,

We must now introduce the tensor T,,. If we take the values
(5), replacing p by p,, the equations (3) become

Gy = —a(d+ $KPo)s
2 Gy = — a(A+ Jpy),

—}Gf — a(X = $xpy),

which are the equations (7) already given above. It is easily
verified that all the different sets of g,, which have been given
above for the inertial field satisfy these equations, if the appropriate
values are taken for A and p,,

It has been found above that we can always introduce such a
system of reference that a, b , / are functions of the variable y only.
~We can thus omit the lower lines of the expressions (29). Doing
this, and using in T,, again p instead of p; I find by a slight

transformation *
(@) n'+n(m +in —3l')=axp— zad,
6y m"+gm/(m - n' =1') = - axp,

(30) a
() - 7+ Im'(n +4m') = - al

In the equations (3') the Juv OCCUr MOb only in the left-hand
members, but are also involved in the T,,. In (30) we have taken
the values (5) of T,,. These correspond to the case that all matter
is at rest, and not subject to any pressure or other internal forces.
The fact that the g,, of the inertial field of the system A satisfies
these equations thus proves that by inertia alone no internal stress

* We take
(@)= — 250Gy, (b)=Cry+

5 P, (0)=3Gm~30)
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or pressure is produced in the world-matter, if this is at rest, and
if p, is constant.

If the equations. (30) are correct, which they only are in case
the values (5) of the T,, are admissible, they must be dependent on
each other.* If we form the combination

(,l C 7 ’ ’
27(!/—)-4—2[ =] (e)=[m +n"]. (b)-m . (a),
then we find
(31) o=axpn'.

The equations (30) are therefore only correct when either p=o0
(as in the systems B and C outside matter), or f=const. (asin A
and C in the absence of gravitation). If the gravitational effect
of the sun is not neglected, we cannot use the values (5) of T,,.
If in the system A we consider the world-matter as a continuous
“fluid ” at rest, there must be a stress or pressure in it; if it is
considered as consisting of concrete material particles, these cannot
be at rest. Which way of treating it is chosen, is not essential for
our purpose. We will assume the world-matter to be an incom-
pressible fluid. Then we have

(32) Tii= —gup, Tyy=9p-
If this is introduced, we find, instead of (30),

(@) A" +n (' + ' —R) = ax(p + 3p) - 20,
(33) (B) m'+im'(m' —n' =)= — ax(p + p),

(¢) - % +4m/'(n’ + im’) = akp — al.

If p is determined in accordance with the principles of
Einstein’s theory, the equations (33) become dependent on each
other.; We can therefore use the equations (33), with an arbitrary

* See first paper, art. 8 (M. V., lxxvi. p. 708).
1 See first paper, p. 713, where we put P=o.
1 If for @, b, f we take the values of the inertial field of the system A, viz.

a=1, b=RZsin®y, f=1,
then the three equations (33) are found to be dependent on each other, and
to reduce to
3 2
(a) A=R2~ kP w(p+po) =gz

If we take p=o0, these give the values (9a) of p, and A. If, however, we
admit a pressure in the world-matter, we can have other values of p, and A.
If we take the values of the inertial field of the system B, viz.

a=1I, b=R?sin%?x, f=cos?y,
then the three equations are again dependent on each other, and reduce to
3
®) O N T

For p=o these give the values (9B), and, unless we are prepared to admit
a negative pressure, this is the only solution.
These considerations originated from a remark made by Professor Lorentz
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additional condition, to determine a, b, f, and p. The same
combination as was used above now gives, instead of (31),

(34) ak[(p+p)n’ + 2p"] =o.

We require only the field outside the sun. We can thus take
p=py Integrating (34), and determining the constant of integra-
tion from the condition that for /=1 we must have p = o, we find

(35) P=Po<;/17-—--1>.

If this value of p is introduced, the equations (33) become
dependent on each other. We can thus use two of them, and add
an arbitrary condition. If we use the co-ordinates of elliptical
space, z.e. if we take y =, we can put

a=1+a, b=RZsin?yx(r+pB), f=1+y.
Further, instead of (9a) we now take
A=e(1+), Kpy = 2A+ €. 9,

where £ and & are constants, which must be of the same order as
a, B, y. If we neglect quantities of the second order, we have
from (35)

p=—%pyy-

The equations (33), of which we use the first and the last, then
become, 1o the first order,
((a) R¥'+2Rcotx.y +3y=34.

6
(36) | (¢) Becosec?x —acot?x+Reotx(B' +v)+y+{=o.

From (36, a) we find *

oS 2

— X 4 &8
sin x

Y= M

For x =4 we must have y=o0. This determines 6. We find
8= —3u. The formula thus becomes

= _ (052X
(37) % ’*<sinx+‘>’

which, after development in powers of 1/R, becomes
- —uR(E 14 >
i # <7'+R+

(in a letter to the writer). Formulas equivalent to (a) also occur in a paper
by Professor T. Levi-Civita, ‘‘Realta fisica di alcuni spazi normali di
Bianchi” (Rendiconti d. Ace. dei Lincei, 1917 May, p. 521), which only
came to my acquaintance after the present paper had been sent to the press.

* The complete integral has cos (2x+ ) instead of cos 2x, w being a
constant of integration, for which we take the value zero.
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It thus appears that pR is the same quantity that has been
called 2A,? in the first paper. If we take R=12. 102 (see art. 6,
below), then for our sun we have p=10"%,

The remaining equation (36) is satisfied by

a=B=-vy-¢
The value of ¢ is arbitrary. We can take {=o.  We have
thus, instead of (ga),

AZR_E’ Kpozz)\-—%—f;.
For r=47R we have y=o; for larger values of r, which are
only possible in spherical space, the numerical value of y increases
again ; and for r=27R we would have y= — o, however small u
may be. In the elliptical space, of course, this difficulty does not
exist, since distances exceeding =R are impossible.
In the system B we have, outside the sun, p=o, and conse-
quently also p=0. The equations (33) then are dependent on each
other. We now put

a=1+a, b=R? sin? x(1 + ), f=cos? x(1+7),
po=0, A=3e(1+{).
The equations become, to the first order,
(38) {(a) R2%y" + 2Ry'(cot x — tan x) + R tan x(a’ - 28") + 6_(a +{)=o,
(¢) (B—a)cosec? x+ 3(a+)+RB (cot x —tan x) + Ry’ cot x =o.
These are satisfied by

a = Iu - &,
sin x
B:— -’u _C7
sin x
S
’= sinx-’-é

The value of ¢ is irrelevant. We can take {=o0. If we took
{=p, we would have a=y=o0 for r=4wR. If then we introduce

v=r(i~3u), B=R(t-fu), ¢=t+}p)

we have, neglecting the square of u, for these new variables:

’

r 3
X=g> A=gw
r_ IU, ’r 9 l,(, ’ ‘I.L
a=14+ — b = R2 sin? ( - > = cos? ( -._>
+smx’ X\ ! sin y » X\! sin x ’

or the same formulas as for the unaccented letters with {=o.
6. We will now try to make some estimates of the value of R,
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which must be adopted in order not to contradict the known data
of observations. We will throughout use astronomical units: the
unit of time being the day, of length the mean distance of the
earth from the sun, and of mass the sun’s mass.* In these units

we have
¢=173, k=1}.10"5%

We will first take the system A.
In elliptical space the apparent angular diameter of an object
whose linear diameter is d, at the distance » =Ry from the earth, is

o d
~ Rsinx’

It is very probable that at least some of the spiral nebulae
or globular clusters are galactic systems comparable with our own
in size. If then we take for the diameters, e.g., d= 10° and 8=75/,
then even for the maximum distance r=17xR we would have
R=6.101". We are thus led to take, roughly,

(39) Rz10%%

The total volume of elliptical space is V,==2R3. We have
kp,=2/R? consequently the total mass of the world-matter is
M, =22?R/k, or
8. 10¢

R2

If for M, we took the mass of our galactic system, which may
be estimated t at 4. 10 we would find R =41, which, of course,
is absurd. A better estimate is found if we start from p, and
take for this the star-density at the centre of the galactic system,]
which may be estimated at about 8o stars in a unit of volume of
Kapteyn (1ooo cubic parsecs), or p,=10717 in our units. We
then find '

(40) R=9g. 10

M,=8.10'R, Po=

* For the sake of comparison we may add that 10 astron. units=
5 parsecs=16 light-years=15. 10'® centimetres. The mass of the sun is
2.10% grams. A density 1 in astronomical units is therefore equivalent to
6.10-7in C.G.S. units.

1 Communicated by Professor Kapteyn. The estimate is baséd on
van Rhyn’s recent investigation of the number of stars (Groningen Publica-
tfi'lons, 27), assuming the average mass of the stars to be the same as that of
the sun.

1 In his paper of 19oo, which is quoted below, Schwarzschild considers
an elliptical universe just large enough to contain our galactic system (with
a constant density equal to the star-density near the sun). This would be a
very simple solution of the problem of what prevents the disintegration of the
galactic system by the proper motions of the stars, The same argument is
used by Einstein in the introductory paragraph of his XKosmologische
Betrachtungen. 1t is evident, however, from the numerical data given
above, that the elliptical space of the system A does not fulfil this purpose.
In it the stars can escape from the galactic system quite as easily as in the
classical euclidean space (system C).
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The total mass would then be My=7.10'% and the volume
V,=17.10%.

It is very probable that in the part of space which immediately
surrounds our galactic system there are many similar systems
whose mutual distances are large compared with their dimensions.
If for the average shortest distance between neighbouring systems
we take 101°, and if further we suppose that not only our
neighbourhood but the whole universe is thus filled with galactic
systems, there would be room for 7.10° of such systems. If
each of these had a mass of §. 10! their combined mass would
be 2.10!%, or only 5oy of the total mass of the world-matter.
According to this view, only a small portion of the world-matter
would be condensed into ordinary matter. .It is, however, very
well possible to imagine a world in which all the world-matter
would be thus condensed. We must then, as unit of volume with
which to measure the average density p,, take a space which is
large with respect to the mutual distances of the galactic systems.
With the numerical data adopted above, we would then have
po=1%. 1072, from which

(41) ' R<js. 108

I write the sign =< instead of = because, if we took a still
larger value for R, the total mass of the world-matter would not
be sufficient to fill the universe with galactic systems. We can
thus consider the value (41) as an upper limit—subject, of course,
to the uncertainty (which is considerable) of the hypotheses and
of the numerical data from which it was derived.

Space being finite, and the straight line closed, we should, at
the point of the heavens opposite the sun, see an image of the
back side of the sun. This not being the case, the light must
be absorbed on its way ‘“round the world.” Schwarzschild*
estimates that an absorption of 40 magnitudes would be sufficient.
If we accept the result of Shapley,t that the absorption in inter-
galactic space is less than o'ooo1 mag. in a Kapteyn’s unit of dis-
tance (1o parsecs), then for an absorption of 40 mags. to be produced
in a distance of =R we must have, in our units,

(42) | R>3. 1ol

King  has derived the density of matter in space from the
coefficient of selective absorption. The selective absorption found
by Shapley is about one-fiftieth of the value used by King. The
latter finds a density of 6300 suns per cubic parsec. Shapley’s
absorption would thus require one-fiftieth of this, or 3. 107'* in our
units. This would correspond to R=2.101%. With this value of
R the total absorption in the distance wR would only be 36
mags., or only one-eleventh of the required value. To get an

# «Ueber das zuliissige Kriimmungsmaass des Raumes,” Vierteljahrssch.
der Astr. Ges., vol, xxxv, (1900), p. 337.

+ Mownt Wilson Contributions, No. 116.

I Nature, vol. xcv. p. 70L.
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absorption of 40 mags., we must multiply the density by 112 and
consequently divide R by 11. This would give

po=2.1071% R=2.10°%

This density appears to be much too large, and R much too
small, to be admissible. The two assumptions underlying this
determination are: 1st, that the coefficient of general absorption
(extinetion) is equal to that of selective absorption by molecular
scattering ; and 2nd, that the world-matter consists of molecules
of hydrogen. Both assumptions may be considerably in error,
and the extinction produced by a given density may well be much
larger, and consequently the density needed for a given extinction
much smaller, than has been here assumed.

Each of the estimates (39), (40), (41), (42) of course is subject
to a very large uncertainty. Their near agreement is rather
remarkable, and could not have been expected a priori.

7. In the system B the rays of light are straight lines in
hyperbolical space. The parallax has, according to the formula
(20'), aminimum p,=1/R. Schwarzschild has, in the paper already
quoted, derived a lower litnit for the value of R of hyperbolical
space, from the fact that there are certainly stars with parallaxes
equal to o”'o5 or smaller, He thus found

R>4.10%.

Of course only actually measured absolute parallaxes can be
taken into account. All parallaxes measured after 1goo are
relative ones, and consequently the limit found by Schwarzschild
still corresponds to our present knowledge.

The reasoning by which the value (39) of R was derived for
the system A is not applicable to the system B, for the relation
between apparent and linear diameter is here

d d

. - Rtany’
R sinh =& X
sin R

8::

which shows that & is zero for »=4wR. If we accept the existence
of a number of galactic systems whose average mutual distances
are of the order of 10! all we can say is that #R must be several
times 10!, or roughly

(43) R>10',

Also the estimate of R, based on the fact that we do not see
the back of the sun, is not applicable to the system B, because
light requires an infinite time for the “ voyage round the world.”

In the system B we have g, =cos?yx. Consequently the
frequency of light-vibrations diminishes with increasing distance
from the origin of co-ordinates. The lines in the spectra of very
distant stars or nebule must therefore be systematically displaced
towards the red, giving rise to a spurious positive radial velocity.
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It is well known that the helium stars do indeed show a systematic
displacement, corresponding to about + 45 km./sec. If we ascribe
about one-third of this to the mass of the stars themselves,* the
rest, or + 3 km./sec., may be explained as an apparent displacement
due to the diminution of g,,. For the average distance of the B-stars
we can take T =Ry =3.107. We then have 1 — cosx = 1079, from
which

(44) R=}. 10v.

Campbell has also found a systematic displacement of the same
sign for the K-stars, whose average distance probably is the largest
after the helium stars. For stars of other types both the system-
atic displacement and the average distance are smaller.

For the lesser Magellanic cloud Hertzsprung found the distance
7>6.10% The radial velocity] isabout+ r5o km./sec. This gives

(45) R>2z. 10,

The formulas (25°), for small values of 7, become the same as
in classical mechanics. For large values of r there is no reason

why the angular proper motion % should not decrease in the same

way as it does in Newtonian mechanics. The total linear velocity,
however, and consequently also the radial velocity, may on the
average be expected to increase up to x=4m, owing to the first
term on the right in the second formula {25’). We should thus,
in the system B, for stars in our neighbourhood expect radial and
transversal velocities of the same order, but for objects at very
large distances we should expect a greater number of large or very
large radial velocities. Spiral nebul® most probably are amongst
the most distant objects we know. Recently a number of radial
velocities of these nebule have been determined. .The observa-
tions are still very uncertain, and conclusions drawn from them
are liable to be premature. Of the following three nebule, the
velocities have been determined by more than one observer : §

Andromeda (3 observers) — 311 km./sec.
N.G.C. 1068 (3 » )+ 925 .
N.G.C. 4594 (=2 ,, ) +1185

These velocities are very large indeed, compared with the usual
velocities of stars in our neighbourhood.

The velocities due to inertia, according to the formula (25"), have
no preference of sign. Superposed on these are, however, the
apparent radial velocities due to the diminution of g,,, which are
positive. The mean of the three observed radial velocities stated

* See first paper, p, 719.

t See Astrophysical Journal, vol. xxxii. p. go.

1 Report to the Council, 1917 Feb., M. N., Ixxvii. p. 376.

§ Report to the Council, 1917 Feb., M. V., Ixxvii. pp. 375, 383.
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above is + 600 km./sec. If for the average distance we take
10® parsecs = 2. 101% then we find

(46) R=3.10l,

Of course this result, derived from only three nebule, has
practically no value, If, however, continued observation should
confism the fact that the spiral nebule have systematically positive
radial velocities, this would certainly be an indication to adopt
the hypothesis B in preference to A. If it should turn out that
no such systematic displacement of spectral lines towards the red
exists, this could be interpreted either as showing A to be pre-
ferable to B, or as indicating a still larger value of R in the
gystem B.

Doorn : 1917 July.

The Equations of Radiative Transfer of Energy.
By J. H. Jeans.

1. In a gaseous star it is probable  that much more energy
is transferred by radiation than by ordinary gaseous conduction,
so that an accurate determination of the laws of radiative transfer
is a necessary preliminary to many problems of stellar physics.
In two recent papers * Professor Eddington has given an equation
of transfer which I believe to be erroneous (at least when con-
sidered with reference to its application), and which has, I
believe, led him to an erroneous result. In the present paper
I have examined independently the laws of radiative transfer.

These laws, like those of ordinary conduction of heat, can
of course be found in a general form independently of the
special problem to which they are ultimately to be applied; we
need not complicate the laws by introducing (as Professor
Eddington does) the curvature of the star’s figure.

Consider a medium arranged so that layers of equal tempera-
ture are normal to the axis of x, and consider the stream of
radiation making an angle # with this axis. At the plane x=¢£
let the stream of radiation crossing a plane of cross-section do per
unit time in directions contained within a small cone dw be
Idodw, where I is a function of x and 6.

After traversing a length of path ds, the main part of the
radiation will reach the plane 2=£+dscosd. On this path it
will have been diminished in a ratio 1 —cpds, where ¢ is a
coefficient of opacity for this particular radiation, measured per
unit mass, and p is the density of the medium. It will also
have been reinforced by radiation emitted by the matter traversed.
The volume of this matter is dsdo, so that if E is the emission

* M.N., 1916 Nov, and 1917 June.
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